TD 3-Sheaves on topological spaces, ringed spaces

We write $\operatorname{Sh}(X)$, $\operatorname{Ab}(X)$ for the categories of sheaves of sets, resp. abelian sheaves on a topological space X. I will simply write equality instead of "canonical isomorphism". If $F \in \operatorname{Sh}(X)$ and $x \in X$, F_x is the stalk of F at x, and for $s \in F(U)$ with $x \in U$, s_x is the image of s in F_x .

A ringed space $X = (X, O_X)$ is a topological space X together with a sheaf of rings O_X on it, and a morphism of ringed spaces $f = (f, f^{\sharp}) : X \to Y$ consists of a map of topological spaces $f : X \to Y$ and a map of sheaves of rings $f^{\sharp} : O_Y \to f_*O_X$. We write Mod(X) for the category of O_X -modules (i.e. abelian sheaves F such that F(U) is an $O_X(U)$ -module in a way compatible with restrictions) on a ringed space (X, O_X) . If $f : X \to Y$ is a morphism of ringed spaces and $F \in Mod(Y)$, we define $f^*(F) \in Mod(X)$ by

$$f^*F = O_X \otimes_{f^{-1}(O_Y)} f^{-1}(F),$$

the map $f^{-1}(O_Y) \to O_X$ being induced (by adjunction) by f^{\sharp} and the tensor product sheaf being the sheaffication of the obvious presheaf.

X is always a topological space below, sometimes-always mentioned-a ringed space.

0.1 A few concrete examples

- 1. What is the sheafification of the presheaf on **R** sending U to the set of continuous bounded maps $f: U \to \mathbf{R}$?
- 2. a) Let F be the sheaf of holomorphic functions on C, and let f: F → F be the map induced by d/dz. Is the presheaf U → coker(f(U): F(U) → F(U)) a sheaf? What is its sheafification?
 b) Let X = C* and consider the exponential as a map between the sheaf F of continuous C-valued functions on X and the sheaf G of invertible continuous maps on X. Is the presheaf U → Im(exp(U): F(U) → G(U)) a sheaf? What is its sheafification?
- 3. Let $X = \mathbb{C}^*$ and consider the map $f : X \to X$ sending z to z^2 . Is the direct image $f_*\mathbb{C}$ of the constant sheaf \mathbb{C} a constant sheaf?
- 4. Let $(A_x)_{x \in X}$ be arbitrary sets, indexed by a topological space X. Prove that there is a natural sheaf F on X such that for all open subsets U of X we have $F(U) = \prod_{x \in U} A_x$. If A_x are abelian sheaves and we replace direct product by direct sum, is the conclusion valid? Is A_x the stalk of F at $x \in X$?

0.2 Espace étalé

Let F be a sheaf on X. Let $\tilde{F} = \coprod_{x \in X} F_x$ and $\pi : \tilde{F} \to X$ the natural map. If $s \in F(U)$, define a map $g_s : U \to \tilde{F}, g_s(x) = s_x \in F_x$, and consider the topology on \tilde{F} having as open sets the $g_s(U)$.

- 1. Prove that the topology induced on F_x is the discrete topology, and that g_s is a homeomorphism from U onto its image.
- 2. Prove that F(U) is identified with the set of continuous functions $s: U \to \tilde{F}$ such that $\pi \circ s = \mathrm{id}_U$.

0.3 Everything is seen by stalks

Let $f, g: F \to G$ be maps of presheaves on a topological space X.

- 1. Prove that if F is a sheaf, then for any open $U \subset X$ the natural map $F(U) \to \prod_{x \in U} F_x$ is injective.
- 2. If G is a sheaf and $f_x = g_x : F_x \to G_x$ for all $x \in X$, then f = g.
- 3. If F is a sheaf, prove that $f(U) : F(U) \to G(U)$ is injective for all open subsets U if and only if $f_x : F_x \to G_x$ is injective for all $x \in X$ (in which case we say that f is injective). The same happens with injective replaced by bijective, if we assume moreover that G is a sheaf.

- 4. Let X be an open subset of **C** and consider the sheaf O_X of holomorphic functions on (open subsets of) X. Prove that the map $D: O_X \to O_X$, D(f) = f' is a surjective map of sheaves (i.e. it induces surjective maps on all stalks), and give an example where the induced map on sections over X is not surjective.
- 5. Consider an exact sequence of sheaves $0 \to E \to F \to G \to 0$ in Ab(X) (i.e. the map $F \to G$ is surjective as a map of sheaves, and its kernel-computed in the naive way-is E). Prove that for all open subsets U of X we have an exact sequence $0 \to E(U) \to F(U) \to G(U)$. Give examples where this sequence is not exact on the right.

0.4 New sheaves out of old ones

Let X be a topological space.

- 1. (products/direct sums) Let $(F_i)_{i \in I}$ be a family of abelian sheaves on X.
- a) Prove that $U \to \prod_{i \in I} F_i(U)$ is an abelian sheaf on X and has the expected universal property. b) Prove that $U \to \bigoplus_{i \in I} F_i(U)$ is not always a sheaf on X, but its sheafification, denoted $\bigoplus_{i \in I} F_i$, has the expected universal property. Describe the stalks of $\bigoplus_{i \in I} F_i$. Also, prove that if U is a quasi-compact open subset of X, the natural map $\bigoplus_i F_i(U) \to (\bigoplus_i F_i)(U)$ is bijective.
- 2. If you know what inductive/projective systems and their limits are, extend the previous discussion to them (be careful though that the last part in b) above is no longer true for arbitrary colimits).
- 3. (glueing sheaves) Let $(U_i)_{i \in I}$ be an open covering of X. Let $F_i \in \text{Sh}(U_i)$ be sheaves, together with isomorphisms $\varphi_{ij} : F_i|_{U_i \cap U_j} \simeq F_j|_{U_i \cap U_j}$ such that $\varphi_{jk} \circ \varphi_{ij} = \varphi_{ik}$ on $U_i \cap U_j \cap U_k$ for all $i, j, k \in I$. Prove that there is a sheaf F on X together with isomorphisms $\varphi_i : F|_{U_i} \simeq F_i$ such that $\varphi_{ij} \circ \varphi_i = \varphi_j$ on $U_i \cap U_j$ for all i, j. Moreover, F and $(\varphi_i)_i$ are uniquely determined (up to unique isomorphism).
- 4. (tensor product) Let (X, O_X) be a ringed space. Define, for $F, G \in Mod(X)$, $F \otimes_{O_X} G \in Mod(X)$ as the sheafification of $U \to F(U) \otimes_{O_X(U)} G(U)$.
 - a) Prove that $(F \otimes_{O_X} G)_x = F_x \otimes_{O_{X,x}} G_x$ for all $x \in X$.
 - b) Let $f: X \to Y$ be a morphism of ringed spaces. See the introduction for the functor f^* .
 - i) Prove that for $F, G \in Mod(Y)$ we have $f^*(F \otimes_{O_Y} G) = f^*F \otimes_{O_X} f^*G$.

ii) Let $F \in Mod(X)$ and let $G \in Mod(Y)$, with G locally free of finite rank (i.e. each $y \in Y$ has an open neighborhood U on which $G|_U$ is isomorphic to $O_U^{n_U}$ for some integer n_U). Prove the **projection** formula

$$f_*(F \otimes_{O_X} f^*(G)) = f_*(F) \otimes_{O_Y} G.$$

5. (Hom sheaf) a) Let $F, G \in Ab(X)$. Prove that $U \to \operatorname{Hom}_{Ab(U)}(F|_U, G|_U)$ is again an abelian sheaf, called Hom(F, G). What happens if we try to consider instead $U \to \operatorname{Hom}_{Ab}(F(U), G(U))$?

b) Suppose now that $X = (X, O_X)$ is a ringed space. We have an obvious variant of a), that we still call Hom(F, G), sending U to $Hom_{O_U}(F|_U, G|_U)$.

i) Prove that if $F \in Mod(X)$ is finitely presented (i.e. any point $x \in X$ has an open neighborhood U in X for which there is an exact sequence of O_U -modules $O_U^m \to O_U^n \to 0$ for some integers m, n depending on U), then for all $G \in Mod(X)$ and $x \in X$ we have $Hom(F, G)_x = Hom_{O_{X,x}}(F_x, G_x)$.

ii) Prove that for any **flat** morphism of ringed spaces $f: X \to Y$ (flatness means that the map of rings $O_{Y,f(x)} \to O_{X,x}$ is flat for all $x \in X$) and any $F, G \in Mod(X)$, with F finitely presented

$$f^*Hom(F,G) = Hom_{O_X}(f^*F, f^*G).$$

0.5 Restriction to open and closed subspaces

Let $j: U \to X$, resp. $i: Z \to X$ be the inclusion of an open, resp. closed subset of a topological space X.

1. Describe concretely $j^{-1}F$ (often written $F|_U$) and prove that $j^{-1}j_*(F) = F$ for $F \in Ab(U)$.

Let j_!: Ab(U) → Ab(X) be the extension by zero functor, so j_!(F) is the sheafification of the presheaf sending V to {0} when V is not contained in U, and to F(V) otherwise.
 a) Prove that

$$\operatorname{Hom}_{\operatorname{Ab}(X)}(j_!(F), G) = \operatorname{Hom}_{\operatorname{Ab}(U)}(F, j^{-1}(G)).$$

b) Prove that $(j_!F)_x$ is 0 when $x \notin U$ and F_x otherwise. Deduce that $j_!$ is an exact functor, identifying Ab(U) with the category of abelian sheaves on X whose stalks vanish outside U (start by checking that $j^{-1}j_!(F) = F$ for $F \in Ab(U)$).

- 3. Prove that $(i_*F)_x$ is 0 when $x \notin Z$ and F_x otherwise. Deduce that i_* is an exact functor, identifying Ab(Z) with the category of abelian sheaves on X whose stalks vanish outside Z (start by checking that $i^{-1}i_*(F) = F$ for $F \in Ab(Z)$).
- 4. Suppose that $Z = X \setminus U$. Prove that for any $F \in Ab(X)$ one has a canonical exact sequence

$$0 \to j_! j^{-1}(F) \to F \to i_* i^{-1}(F) \to 0.$$

5. a) Prove that any F ∈ Ab(X) has a largest abelian subsheaf H_Z(F) whose support is contained in Z.
Hint : the sections of H_Z(F) are those s ∈ F(U) whose support is contained in Z ∩ U.
b) Define i': Ab(X) → Ab(Z) by i'(F) = i⁻¹H_Z(F). Prove that i' is right adjoint to i_{*}, i.e.

$$\operatorname{Hom}_{\operatorname{Ab}(X)}(i_*G, F) = \operatorname{Hom}_{\operatorname{Ab}(Z)}(G, i^!F).$$

0.6 Flasque sheaves

An abelian sheaf F on a topological space X is called **flasque** if the restriction map $F(X) \to F(U)$ is surjective for all open subsets U of X.

- 1. Check that F is flasque iff $F(V) \to F(U)$ is surjective for all open subsets $U \subset V$ of X.
- 2. Prove that being flasque is stable under restriction to an open subset and under direct image by a continuous map.
- 3. Prove that a constant sheaf on an irreducible space is flasque.
- 4. a) Prove that if $0 \to E \to F \to G \to 0$ is an exact sequence in Ab(X), with E flasque, then $0 \to E(U) \to F(U) \to G(U) \to 0$ is exact for all open subsets U of X. Moreover, if E and F are flasque, then so is G.

b) Consider a long exact sequence of flasque sheaves $0 \to E \to F^0 \to F^1 \to F^2 \to \dots$ in Ab(X). Prove that for all open subsets U of X we have a long exact sequence $0 \to E(U) \to F^0(U) \to F^1(U) \to \dots$

0.7 Godement resolution, flasque sheaves, cohomology

Let X be a topological space. If $F \in Ab(X)$, set $G(F)(U) = \prod_{x \in U} F_x$ for $U \subset X$ open.

- 1. Prove that G(F) is a flasque sheaf, and that the natural map $F \to G(F)$ is injective.
- 2. Define a sequence of sheaves $Q^n(F), G^n(F)$ for $n \ge 0$, with natural injective maps $Q^n(F) \to G^n(F)$ as follows : $G^0(F) = G(F), Q^0(F) = F$, and for $n \ge 1$ set

$$Q^{n}(F) = \operatorname{coker}(Q^{n-1}(F) \to G^{n-1}(F)), \quad G_{n}(F) = G(Q^{n}(F)),$$

the map $Q^n(F) \to G^n(F)$ being the natural one.

- a) Prove that $F \to G^n(F)$ are exact functors for $n \ge 0$, and that $G^n(F)$ is a flasque sheaf for all n.
- b) Prove that there is a long exact sequence of sheaves, called the Godement resolution of F

$$0 \to F \to G^0(F) \to G^1(F) \to G^2(F) \to .$$

3. If U is an open subset of X and $F \in Ab(X)$, we define the cohomology groups of F over U $H^n(U, F)$ as the cohomology groups of the induced complex $0 \to G^0(F) \to G^1(F) \to \dots$ i.e. $(G^n(F) = 0 \text{ for } n < 0)$

$$H^n(U,F) = \frac{\ker(G^n(F) \to G^{n+1}(F))}{\operatorname{Im}(G^{n-1}(F) \to G^n(F))}$$

- a) Check that $H^0(U, F) = F(U)$ and that if F if flasque, then $H^n(U, F) = 0$ for $n \ge 1$.
- b) Prove that if $0 \to E \to F \to G \to 0$ is an exact sequence in Ab(X), then for any open subset U of X we obtain a long exact sequence

$$0 \to E(U) \to F(U) \to G(U) \to H^1(U, E) \to H^1(U, F) \to H^1(U, G) \to H^2(U, E) \to H^2(U, F) \to \dots$$